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Abstract

Human gait and activity analysis from video is presently
attracting a lot of attention in the computer vision commu-
nity. In this paper, we analyze the role of two of the most
important cues in human motion- shape and kinematics.
We present an experimental framework whereby it is pos-
sible to evaluate the relative importance of these two cues
in computer vision based recognition algorithms. In the pro-
cess, we propose a new gait recognition algorithm by com-
puting the distance between two sequences of shapes that
lie on a spherical manifold. In our experiments, shape is
represented using Kendall’s definition of shape. Kinematics
is represented using a Linear Dynamical system. We place
particular emphasis on human gait. Our conclusions show
that shape plays a role which is more significant than kine-
matics in current automated gait based human identifica-
tion algorithms. As a natural extension we study the role
of shape and kinematics in activity recognition. Our exper-
iments indicate that we require models that contain both
shape and kinematics in order to perform accurate activ-
ity classification. These conclusions also allow us to ex-
plain the relative performance of many existing methods in
computer-based human activity modeling.

1. Introduction

Human activities are characterized by a sequence of
poses or configurations of the human body. There has
been considerable work in the psychophysics commu-
nity on whether body shape or kinematics plays a greater
role in our understanding of human activities[13][6]. In this
paper we analyze the relative importance of shape and kine-
matics in human motion analysis from the point of view
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of existing computer algorithms. Two areas of inter-
est are person identification using gait as a biometric and
human activity analysis. Several algorithms have been sug-
gested for the task of person identification at a distance
using gait. Most of these algorithms extract certain fea-
tures from the silhouettes of the person and attempt to
identify individuals based on these features and the tem-
poral variation of these features. While the features
characterize the shape of the silhouette, the temporal vari-
ation of these features characterize kinematics. Although
intuition suggests that both shape and kinematics are im-
portant for recognition, there has been very little study on
the importance of each of these cues in recognition per-
formance. We attempt to address this issue. We propose
a new gait recognition method based on shape and com-
pare recognition results with other shape and kinematics
based algorithms. We also look at the problem of activ-
ity recognition and provide some insights regarding the role
of shape and kinematics for this task.

1.1. Motivation and Prior work

Considerable effort has been made in the computer vi-
sion, artificial intelligence and image processing communi-
ties to the understanding of human activities. A survey of
literature in human motion analysis can be found in [8]. Re-
cently, significant efforts have been devoted to the study of
human gait. The motivation for using gait as a biometric for
person identification comes from the observation that peo-
ple are able to recognize others by simply observing their
gait. Several studies have been done on the various cues
that humans use for gait recognition[13][10]. Cutting and
Kozlowski suggest that kinematic cues like speed, bounci-
ness and rhythm are more important for human recognition
than static cues like height. Cutting and Proffitt [6] argue
that motion is not the simple compilation of static forms
and claim that it is a dynamic invariant that determines
event perception. Moreover, they also found that kinemat-
ics was crucial to gender discrimination using gait. There-
fore, it is intuitive to expect that kinematics plays a role in
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person identification though shape information might also
be equally important. In the light of such developments,
we wish to explore the importance of shape and kinemat-
ics in human movement analysis from the perspective of
computer vision algorithms and analyze their role in exist-
ing gait recognition methodologies.

There are several shape or kinematics based methods for
activity based person identification. Collins et al. built a sil-
houette based nearest neighbour classifier [4] to do recog-
nition. Several researchers have used Hidden Markov Mod-
els for the task of gait based identification [17][11][12]. An-
other shape based method for identifying individuals from
noisy silhouettes is provided in [18]. Apart from these, Cu-
nado et al. [5] model the movement of thighs as articulated
pendulums and extract a gait signature using this model.
In[1], trajectories of the various parameters of a kinematic
model of the human body are used to classify different kinds
of human activities. Thus there have been several shape or
kinematics based approaches to do recognition. Some of
these methods(like HMM) try to take advantage of both
these cues. Yet the relative importance of shape and kine-
matics in human motion has not been understood.

As a by product of our analysis on the relative im-
portance of shape and kinematics in gait recognition,we
propose a new gait recognition algorithm using shape by
computing the distance between two shape sequences. The
shapes lie on a spherical manifold. Dynamic time warp-
ing(DTW) is used to compute the distance between two
paths on this manifold. We also propose a kinematics based
recognition algorithm by modeling gait as a linear dynami-
cal system. We learn a dynamical model for each individual,
compute the distance between two models and use this dis-
tance measure to perform recognition. We then present re-
sults of an experimental study in order to understand the nu-
merical significance of shape and kinematics separately in
state of the art gait recognition algorithms. As a natural ex-
tension, we also study their role in activity recognition.

2. Shape Analysis

“Shape is all the geometric information that remains
when location, scale and rotational effects are filtered out
from the object.”[7] In this paper we use the shape as de-
fined in [7]. In this section we provide a brief description of
the various tools in statistical shape analysis. Kendall’s rep-
resentation of shape describes the shape configuration of k
landmark points in an m-dimensional space as a k×m ma-
trix containing the coordinates of the landmarks.

2.1. Characterization of Shape

The binarized silhouette of a walking person is obtained.
A shape feature is extracted from the binarized silhouette.

This feature vector must be invariant to translation because
identity should be independent of where the individual is lo-
cated. It should also be invariant under scaling since iden-
tity should not depend on the distance of the subject from
the camera. This yields the pre-shape of the walking person
in each frame. Pre-shape is the geometric information that
remains when location and scale effects are filtered out. Let
the configuration of a set of k landmark points be given by
a k-dimensional complex vector containing the position of
the landmarks. Let us denote this configuration as X. Cen-
tered pre-shape is obtained by subtracting the mean from
the configuration and then scaling to norm one. The cen-
tered pre-shape is given by

Zc =
CX

‖ CX ‖ , where C = Ik − 1
k

1k1T
k , (1)

where Ik is a k×k identity matrix and 1k is a vector of k
ones.

2.2. Distance between shapes

The pre-shape vector that is extracted by the method de-
scribed above lies on a spherical manifold. Therefore a con-
cept of distance between two shapes must include the non-
Euclidean nature of the shape space. Several distance met-
rics have been defined in [7]. Consider two complex con-
figurations X and Y with corresponding preshapes α and β.
The Full Procrustes fit between X and Y is chosen so as to
minimize

d(Y, X) =‖ β − αsejθ − (a + jb)1k ‖, (2)

where s is a scale, θ is the rotation and (a + jb) is the
translation. One of the distance measures used is the Full
Procrustes distance which is the minimum of the Full Pro-
crustes fit i.e.,

dF (Y, X) = inf
s,θ,a,b

d(Y, X). (3)

Since the preshapes are obtained after filtering out effects of
translation and scale, the translation value that minimizes
the full Procrustes fit is given by (a + jb) = 0, while
the scale s = |α∗β| is very close to unity. The rotation
angle θ that minimizes the Full Procrustes fit is given by
θ = arg(|α∗β|).

The partial Procrustes distance between configurations X
and Y is obtained by matching their respective preshapes α
and β as closely as possible over rotations, but not scale.

dP (X, Y ) = inf
ΓεSO(m)

‖ β − αΓ ‖ . (4)

The Procrustes distance ρ(X, Y ) is the closest great circle
distance between α and β on the preshape sphere. The three
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distance measures defined above are all trigonometrically
related as given below:

dF (X, Y ) = sin ρ dP (X, Y ) = 2 sin(
ρ

2
). (5)

When the shapes are very close to each other there is very
little difference between the various shape distances. Our
experiments show that the choice of shape-distance does not
alter recognition performance significantly since the shapes
of a single individual lie close to each other. We show the re-
sults corresponding to the partial Procrustes distance in all
our plots in this paper.

2.3. The tangent space

The shape tangent space is a linearization of the spher-
ical shape space around a particular pole. Usually the Pro-
crustes mean shape of a set of similar shapes(Yi) is cho-
sen as the pole for the tangent space coordinates. The Pro-
crustes mean shape(µ) is obtained by minimizing the sum
of squares of full Procrustes distances from each shape Yi

to the mean shape, i.e.,

µ = arg inf
µ

Σd2
F (Yi, µ). (6)

The pre-shape formed by k points lie on a k − 1 dimen-
sional complex hypersphere of unit radius. If the various
shapes in the data are close to each other then these points
on the hypersphere will also lie close to each other. The
Procrustes mean of this dataset will also lie close to these
points. Therefore the tangent space constructed with the
Procrustes mean shape as the pole is an approximate lin-
ear space for this data. The Euclidean distance in this tan-
gent space is a good approximation to the various Procrustes
distances dF , dP and ρ in shape space in the vicinity of the
pole. The advantage of the tangent space is that this space
is Euclidean.

The Procrustes tangent coordinates of a preshape α is
given by

v(α, µ) = αα∗µ − µ|α∗µ|2. (7)

where µ is the Procrustes mean shape of the data.

2.4. Shape based methods for Recognition

In order to study the importance of shape for recogni-
tion we use the Kendall’s shape vector as the image fea-
ture. Recognition performance is obtained using three in-
dependent systems, a stance correlation based method, dy-
namic time warping (DTW) [11] and another method based
on the generic Hidden Markov Model(HMM) framework
suggested in [17]. The Stance Correlation method uses only
shape cues for recognition. The DTW and HMM attempt to
exploit the kinematics in gait, although the kinematics is not
explicitly modelled or captured.

2.4.1. Stance Correlation Given a sequence of frames of
a person walking, each frame is classified as belonging to
one of six stances by first locating the cycle boundaries
and then locating the stance boundaries. An exemplar is ob-
tained for each stance as an average of all the frames be-
longing to that particular stance. The correlation between
the corresponding exemplars of two sequences is used as
the similarity score between these two sequences. Recog-
nition is performed based on these similarity scores. This
method attempts to isolate the effect of shape from a method
like the HMM that uses both shape and kinematics.

2.4.2. Dynamic Time Warping in shape space We de-
velop a new shape-based recognition algorithm using DTW
on the spherical shape manifold. Given a sequence of a per-
son walking, the shape of the silhouette is extracted for ev-
ery frame. We use DTW to obtain the similarity score be-
tween two such shape sequences. The DTW algorithm en-
forces end point constraints, computes the local and cumu-
lative error and then uses backtracking to obtain the warp-
ing path. One major difference from the approach described
in [11] is that we do the DTW between shapes on a spheri-
cal manifold instead of using Euclidean distances. The Pro-
crustes shape distances are used as the local distance mea-
sure and end point constraints are satisfied by alligning the
rest stances of two sequences. The cumulative error at the
end of the best warping path is computed as the distance
between two sequences of shapes that lie on the spherical
manifold. This cumulative error is minimized when the tra-
jectories corresponding to these shape sequences lie close to
each other on the spherical shape space. Therefore the sim-
ilarity between the two sequences is high when this cumu-
lative error is a minimum. Recognition is performed based
on these similarity scores.

2.4.3. Hidden Markov Model with shape cues Using a
HMM for modeling gait has been studied in the last few
years[17][12]. The postures that an individual adopts can
be regarded as the states of the HMM and these states are
distinct for each individual. The HMM is used in a prob-
abilistic framework to perform recognition. The shape of
the silhouette of the walking person is extracted for each
frame and is used as the feature vector. We follow the HMM
framework reported in [17] by replacing their image cues
with our shape feature vector.

3. Dynamical Models

Gait is an activity with structured kinematics associated
with it. Therefore, a purely shape based method is not an
optimal approach to gait recognition. DTW and HMM at-
tempt to capture the kinematics of gait, though not explic-
itly. In this section, we consider two kinematical models for
gait and provide recognition results using these kinematical
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models. The first method uses an autoregressive(AR) model
while the second approach uses an autoregressive and mov-
ing average model(ARMA).

3.1. Stance Based AR Model

In order to study the role that kinematics plays in gait
recognition, we need to come up with a model for gait kine-
matics. This model must be insensitive to shape, i.e., if two
people with vastly different shapes display the same kine-
matics, then the model inferred for these two individuals
must be the same. This will ensure that we examine the ef-
fect of kinematics alone on recognition performance.

The video sequence of a person walking is divided into
N distinct stances. Within each stance, we learn the dynam-
ics of the shape vector. The time series of the tangent space
projections of the pre-shape vector of each stance is mod-
elled as a Gauss Markov process, i.e.,

αj(t) = Ajαj(t − 1) + w(t) (8)

where, w is a zero mean white Gaussian noise process and
Aj is the transition matrix corresponding to the jth stance.
For convenience and simplicity Aj is assumed to be a di-
agonal matrix. Note that Aj is computed for each stance
separately. Since the gait signal is periodic, we would need
at least a second order model. However, for each stance
there is no periodicity; hence the first order model is valid.
We could, of course, use both the average shape of each
stance(exemplar) and the transition matrices for each stance
as the model of gait and use them for recognition. But,
the exemplars contain shape information. Therefore, we use
only the transition matrices for recognition in order to un-
derstand the role of kinematics.

For all the sequences in the gallery and the probe the
transition matrices are obtained and stored. Given a probe
sequence, the transition matrix for the probe sequence is
computed. The distances between the corresponding tran-
sition matrices are added to obtain a measure of the dis-
tance between the kinematical models. If Aj and Bj (for
j = 1, 2, ...N ) represent the transition matrices for two se-
quences, then the distance between models is defined as
D(A, B)

D(A, B) =
j=N∑

j=1

||Aj − Bj ||F , (9)

where ||.||F denotes the Frobenius norm. The model in the
gallery that is closest to the model of the given probe is cho-
sen as the identity of the person.

3.2. ARMA Model

The problem of gait recognition is transformed to one of
learning a dynamical model from the observations and com-

puting the distances between the dynamical models thus
learnt. The dynamical model is a continuous state, discrete
time model. Since the parameters of the models lie in a
non-Euclidean space, the distance computations between
models is non-trivial. Let us assume that the time-series of
shapes is given by α(t), t = 1, 2, , , , , τ . Then an ARMA
model is defined as[1]

α(t) = Cx(t) + w(t);w(t) ∼ N(0, R) (10)

x(t + 1) = Ax(t) + v(t); v(t) ∼ N(0, Q). (11)

Also, let the cross correlation between w and v be given by
S. The parameters of the model are given by the transition
matrix A and the state matrix C. We note that the choice
of matrices A, C, R, Q, S is not unique. However, we can
transform this model to the “innovation representation”[14]
which is unique.

3.2.1. Learning the model We use the tools from the
system identification literature to estimate the model pa-
rameters.The estimation is closed form and therefore sim-
ple to implement. The algorithm is described in [14] and
[16]. Given observations α(1), α(2), .....α(τ), we have to
learn the parameters of the innovation representation given
by Â, Ĉ and K̂(K̂:Kalman gain matrix of the innovation
representation[14]). Note that in the innovation represen-
tation, the state covariance matrix limt→∞ E[x(t)xT (t)]
is asymptotically diagonal. Let [α(1)α(2)α(3).....α(τ)] =
UΣV T be the Singular value decomposition of the data.
Then

Ĉ(τ) = U (12)

Â = ΣV T D1V (V T D2V )−1Σ−1 (13)

where D1 = [0 0;Iτ−1 0] and D2 = [Iτ−1 0;0 0].

3.2.2. Distance between ARMA Models Subspace an-
gles [9] between two ARMA models are defined as the
principal angles (θi, i = 1, 2, ....n) between the column
spaces generated by the observability spaces of the two
models extended with the observability matrices of the in-
verse models [3]. The subspace angles between two ARMA
models ([A1, C1, K1] and [A2, C2, K2] can be computed
by the method described in [3]. Using these subspace an-
gles θi, i = 1, 2, ...n, three distances, Martin distance(dM ),
gap distance(dg) and Frobenius distance(dF ) between the
ARMA models are defined as follows:

d2
M = ln

n∏

i=1

1
cos2(θi)

, (14)

dg = sin θmax, (15)

d2
F = 2

n∑

i=1

sin2 θi. (16)

The various distance measures do not alter the results sig-
nificantly. We show the results using the Frobenius
distance(d2

F ) in this paper.
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Figure 1. Average(average of Probes A-G)
CMS curves(Percentage of Recognition Vs
Rank) using various methods.

4. Experimental Results

The various algorithms described above were used to ob-
tain recognition results on two standard databases. The USF
database [15] consists of 71 people in the Gallery1. Various
covariates like camera position, shoe type, surface and time
were varied in a controlled manner to design a set of chal-
lenge experiments2[15]. The results are evaluated using cu-
mulative match scores3(CMS) curves and the identification
rate. The CMU database [4] consists of 25 people. Each of
the 25 people perform four different activities(slow walk,
fast walk, walking on an inclined surface and walking with
a ball). For the CMU database we provide results for recog-
nition both within an activity and across activities. We also
provide some results on activity recognition on this dataset.
Apart from these, we also provide activity recognition re-
sults on the MOCAP dataset(available from Credo Interac-
tive Inc. and Carnegie Mellon University) which consists of
different examples of various activities.

4.1. Feature Extraction

Given a binary image consisting of the silhouette of a
person, we need to extract the shape from this binary im-
age. This can be done either by uniform sampling along
each row or by uniform arc-length sampling. In uniform
sampling, landmark points are obtained by identifying the

1 A more expanded version is available on which we haven’t yet exper-
imented.However we do not expect our conclusions to alter signifi-
cantly.

2 Challenge Experiments:Probes A-G in increasing order of difficulty.
3 Plot of percentage of recognition Vs rank.

edges of the silhouette in each row of the image. In uni-
form arc length sampling, the silhouette is initially inter-
polated using critical landmark points. Uniform sampling
on this interpolated silhouette provides us with the uniform
arc-length sampling landmarks. Once the landmarks are ob-
tained, the shape is extracted using the procedure described
in 2.1.

4.2. Experiments on Gait Recognition

4.2.1. Results on the USF Database On the USF
database we conducted experiments on recognition per-
formance using all the five methods- Stance Correla-
tion, DTW on shape space, HMM using shape, Stance
based AR and ARMA model. The CMS curves for chal-
lenge experiments A-G were obtained. Figure 1 shows the
average CMS curves(average of the 7 Challenge exper-
iments:Probes A-G) for the various shape and kinemat-
ics based methods. An analysis of the average CMS curve
is provided below.

The following conclusions are drawn from Figure 1:

• The average CMS curve of the Stance Correlation
method shows that shape without any kinematic cues
provides recognition performance below baseline.(The
baseline algorithm is image correlation based and can
be found in [15]).

• The average CMS curve of the DTW method is better
than that of Stance Correlation and close to baseline.

• The improvement in the average CMS curve in the
DTW over that of the Stance Correlation method can
be attributed to the presence of this implicit kinemat-
ics, because the algorithm tries to synchronize two
warping paths.

• The performance of the HMM with shape as the fea-
ture vector is very similar to that of the DTW.

• Both methods based on kinematics(Stance based AR
and ARMA model) do not perform as well as the meth-
ods based on shape.

• The results support our belief that kinematics helps to
boost recognition performance but is not sufficient as
a stand-alone feature for person identification.

• The performance of the ARMA model is better than
that of the Stance based AR model. This is because the
observation matrix(C) encodes information about the
features in the image, in addition to the dynamics en-
coded in the transition matrix(A).

• Exactly similar conclusions may be obtained by look-
ing at the CMS curves for the 7 experiments(Probes
A-G) separately. But we have shown the average CMS
curve for simplicity.
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Figure 2 shows a comparison of the identification
rate(rank 1) of the various shape and kinematics based al-
gorithms.It is clearly seen that shape based algorithms per-
form better than purely kinematics based algorithms.
Note however, that a mere comparison of the identifica-
tion rates will not lead to the conclusions above. For that
we need to compare the average CMS curve of the var-
ious methods(Figure 1). Also, as expected using the
images directly as the feature vector gives better re-
sults but at the cost of very high computational require-
ments.

The USF database does not contain any significant vari-
ation in terms of activity. Therefore, we cannot make any
claims about the significance of kinematics and shape cues
for activity modeling and recognition based on the experi-
ments on the USF database. The CMU dataset enables this.

4.2.2. Results on the CMU Dataset The CMU dataset
has 25 subjects performing four different activities- fast
walk, slow walk, walking with a ball and walking on an in-
clined plane. We perform an experiment on the recogni-
tion performance(i.e., identification rate) using the Stance
Correlation(pure shape) method and compare our re-
sults with HMM based recognition results available at
http://degas.umiacs.umd.edu/hid/cmu-eval.html.

The following conclusions are drawn from Table 1:

• On a database of 25 people, the pure shape based
method (Stance Correlation) provides almost 100%
recognition when the Gallery and the Probe sets be-
long to the same activity. The improvement in perfor-
mance over the USF dataset is because of higher qual-
ity of input video data.

• When we move across activities that change in shape
also (eg. Slow Walk vs Ball), we see that there is con-
siderable degradation in recognition performance as
expected.

Activity Slow Fast Walk with Inclined
Walk Walk Ball plane

Slow Walk 100(72) 80(32) 48 48

Fast Walk 84 100(68) 48 28
Walk with Ball 68 48 92 12
Inclined plane 32 44 20 92

Table 1. Identification rates on the CMU
Data using Stance Correlation (Braces de-
note HMM identification rates)

• When we move across activities that differ only in
their kinematics (eg.Slow Walk vs Fast Walk), we see
that there is a slight degradation in recognition perfor-
mance. The decrease in recognition performance of the
purely shape based Stance Correlation method is not as
drastic as is observed in the HMM method. This is be-
cause the HMM implicitly uses kinematics informa-
tion for recognition. We can attribute the reduction in
performance of the shape based method to the change
in the shape of stances of the person due to a change in
the walking speed [2].

4.2.3. Inferences The gait recognition experiments on the
USF database clearly indicate that given an activity (eg.
gait), shape is more significant for person identification than
kinematics. The experiment also indicates that kinematics
does aid the task of recognition but pure kinematics is not
enough for identification of an individual. The experiments
on the CMU dataset indicate that when performing the same
activity at differing speeds, a pure shape based approach
tends to perform better than some other approaches that use
kinematics also.

4.3. Experiments on Activity Recognition

In this section we discuss some experiments on activ-
ity recognition using the models we have built. The experi-
ments on activity recognition are performed using the CMU
and MOCAP datasets.

4.3.1. Results on the CMU dataset On the CMU dataset
we did two experiments to show the effect of kinematics and
shape on activity recognition using the ARMA model. Con-
sider the three activities slow walk, walk with a ball and
walk on an inclined plane. Considering the shape and kine-
matics of these three activities we expect that the ball alters
the shape of the silhouette of the top half of the body, while
the inclined plane alters the kinematics (and to a lesser ex-
tent shape) of the lower half of the body. In the first experi-
ment we build a ARMA model for the shape of the top half
of the body. Frobenius distance between the principal an-
gles of the ARMA models is computed. Figure 3(a) shows
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Figure 3. Similarity matrix using an ARMA model with (a)Top half of silhouette and (b)Bottom half of silhouette

the similarity matrix for the database of 25 people perform-
ing the three above mentioned activities when the model is
built for the shape of the top half of the silhouette. Figure
3(b) shows a similar similarity matrix, when the model is
built for the shape of the bottom half of the silhouette. The
activity fast walk is distinctly different from all the other
three activities in its kinematics (both in the top and the bot-
tom half of silhouette) and therefore we did not use it in the
current experiment.

The following conclusions may be drawn from Figure 3:

• From Figure 3(a), we see that walking with the ball is
very dissimilar to both inclined plane and slow walk.
Moreover both inclined plane and slow walk them-
selves are quite similar to each other since the inclined
plane would significantly alter only the leg kinemat-
ics.

• From Figure 3(b), we see that walking on an inclined
plane is very dissimilar to ball and slow walk. This in-
dicates that a change in the kinematics of the lower
half of the silhouette affects the model. Moreover, we
see that activities slow walk and ball remain quite sim-
ilar to each other as expected.

4.3.2. Results on the MOCAP dataset The MOCAP
dataset consists of locations of 53 joints during a typical re-
alization of several different activities. We use these joint
locations to build an AR model (without any stance distinc-
tions) and an ARMA model for each activity. The similarity
matrix computed using both these models, for the differ-
ent activities is shown in Figure 4. We notice that the dis-
criminating power of a simple AR model (Fig.4(a)) is not
as good as that of the ARMA model (Fig.4(b)). For ex-
ample, we see that several different instances of walk-
ing are closer to each other in the ARMA model than in
the AR model. This is because the ARMA model implic-
itly contains both shape and kinematics information. From

the similarity matrix in Figure 4(b) we notice that the dif-
ferent kinds of walk are very similar to each other. The
three different kinds of sitting poses are also very simi-
lar to each other. Moreover, walking as an activity is very
different from sitting. As expected, jogging is very sim-
ilar to walking while being dissimilar to sitting. These
observations lead us to believe that the dynamical sys-
tem contains enough information for activity classifica-
tion.

4.3.3. Inferences The activity recognition based experi-
ment on the CMU dataset indicates that a kinematics based
approach does have the ability to differentiate activities
that differ either in shape (slow walk vs ball) or in kine-
matics (slow walk vs inclined plane) because the system
formulation(A, C, K) contains both shape information(C)
and kinematics information(A). The ARMA model is also
capable of performing person identification within a given
activity when the number of subjects is small and the reso-
lution of the image is high. The experiment on the MOCAP
dataset reinforces our belief that the ARMA model can be
used for activity recognition, even though its performance
on person identification in the USF database(large number
of subjects in outdoor environment) was not very good.

5. Conclusions and Future Work

The experiments conducted in this paper clearly indicate
the following4:

1. Given an activity, shape is more important for per-
son identification than kinematics. Methods based on
shape are invariant to speed of the activity and there-
fore perform better when speed changes, provided the
speed change does not alter the shape significantly.

4 Conclusions may vary with technique used.
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Figure 4. Similarity matrix using (a)AR model (b)ARMA model.

2. Kinematics can help to enhance the performance of
shape based person identification methods.

3. For the task of activity recognition we require models
that encode both shape and kinematics ([19] describes
a shape based activity classification technique).

4. An ARMA dynamical system that encodes shape in-
formation also, has greater discriminating power for
activities than a simple AR kinematical system.

5. The person identification capability of ARMA model
based system is significantly poorer than shape based
methods (eg. DTW/HMM). However, with dynamical
system models like ARMA, we can possibly perform
person identification across activities that are not sig-
nificantly different.

In future, we wish to build more advanced kinematical
models of human motion and study the relation of shape
and kinematics in such models.
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